Commentary: Feedback stabilizes propagation of synchronous spiking in cortical neural networks
نویسندگان
چکیده
Precisely timed action potentials related to stimuli and behavior have been observed in the cerebral cortex. However, information carried by the precise spike timing has to propagate through many cortical areas, and noise could disrupt millisecond precision during the transmission. Previous studies have demonstrated that only strong stimuli that evoke a large number of spikes with small dispersion of spike times can propagate through multilayer networks without degrading the temporal precision. Here we show that feedback projections can increase the number of spikes in spike volleys without degrading their temporal precision. Feedback also increased the range of spike volleys that can propagate through multilayer networks. Our work suggests that feedback projections could be responsible for the reliable propagation of information encoded in spike times through cortex, and thus could serve as an attentional mechanism to regulate the flow of information in the cortex. Feedback projections may also participate in generating spike synchronization that is engaged in cognitive behaviors by the same mechanisms described here for spike propagation.
منابع مشابه
Feedback stabilizes propagation of synchronous spiking in cortical neural networks
Precisely timed action potentials related to stimuli and behavior have been observed in the cerebral cortex. However, information carried by the precise spike timing has to propagate through many cortical areas, and noise could disrupt millisecond precision during the transmission. Previous studies have demonstrated that only strong stimuli that evoke a large number of spikes with small dispers...
متن کاملCommunication through Resonance in Spiking Neuronal Networks
The cortex processes stimuli through a distributed network of specialized brain areas. This processing requires mechanisms that can route neuronal activity across weakly connected cortical regions. Routing models proposed thus far are either limited to propagation of spiking activity across strongly connected networks or require distinct mechanisms that create local oscillations and establish t...
متن کاملPresentation Title: Feedback Connections Stabilize Propagation of Synchronous Spiking in Cortical Neural Networks Location: Wcc Hall A-c
Abstract: Precisely timed action potentials have been related to stimuli and behavior in monkeys, indicating that the neural coding may be based on precise spike timing of cortical neurons, synfire chains. An assumption that sensory information may be encoded by precise spike timing has been challenged by the critical question of whether synfire chains can successfully propagate through hierarc...
متن کاملNon-Additive Coupling Enables Propagation of Synchronous Spiking Activity in Purely Random Networks
Despite the current debate about the computational role of experimentally observed precise spike patterns it is still theoretically unclear under which conditions and how they may emerge in neural circuits. Here, we study spiking neural networks with non-additive dendritic interactions that were recently uncovered in single-neuron experiments. We show that supra-additive dendritic interactions ...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015